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EQUILIBRIUM PROBLEM FOR A KIRCHHOFF-LOVE

PLATE CONTACTING WITH THE LATERAL

SURFACE ALONG A STRIP OF A GIVEN WIDTH
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Abstract: A new model of a Kirchho�-Love plate is justi�ed,
which may come into contact by its lateral surface with a non-
deformable obstacle along a strip of a given width. The non-deformable
obstacle restricts displacements of the plate along the outer lateral
surface. The obstacle is speci�ed by a cylindrical surface, the generatrices
of which are perpendicular to the midplane of the plate. A problem
is formulated in variational form. A set of admissible displacements
is determined in a suitable Sobolev space in the framework of a
clamping condition and a non-penetration condition of the Signorini
type. The non-penetration condition is given as a system of two
inequalities. The existence and uniqueness of a solution to the
problem is proven. An equivalent di�erential formulation and optimality
conditions are found under the assumption of additional regularity
of the solution to the variational problem. A qualitative connection
has been established between the proposed model and a previously
studied problem in which the plate is in contact over the entire
lateral surface.
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1 Introduction

Boundary value problems of the theory of elasticity with inequality type conditions
describing the equilibrium of bodies are successfully studied on the basis of variational
inequalities [1, 2, 3]. Within the framework of nonlinear problems with non-penetration
conditions, mathematical models are often studied in which elastic bodies may come
into mechanical contact interaction with non-deformable obstacles [4, 5, 6, 7], or
with another deformable body [8, 9, 10, 11]. For studies of the regularity of solutions
to obstacle problems we refer to [12, 13, 14]. Asymptotic analysis for problems of
solid mechanics with inequality type constraints can be found, for example, in
[15, 16, 17]. In the case where a body has a crack (or cracks), the interaction
of opposite crack faces can also be described using models subject to unilateral
constraints [18, 19, 20, 21, 22, 23, 24], etc. For problems of this type, numerical
methods are proposed, for example, in [25, 26]. Within the framework of the theory
of elasticity, a qualitative connection between nonlinear problems describing contact
interaction with obstacles and problems of the crack theory has been established for
a number of mathematical models [27, 28, 29, 30]. Note that cases of simultaneous
possible contact of the plate along the front surface and lateral edge are also of
interest [31, 32]. We can mention the works for pointwise contact problems [33, 34],
where minimization problems over nonconvex sets are investigated.

In this work, we consider a special con�guration of a non-deformable obstacle in
contact with a strip on the lateral cylindrical surface of a plate. In this case, the
obstacle in the initial state does not come into contact with the points of the plate
along the entire width, as, for example, in the works [29, 30, 35], but along a strip of
a given width. It is shown that when the parameter of the width of the contact zone
tends to the value of the plate thickness, we get as a limiting problem the previously
known problem studied in [28]. Thus, the presented mathematical model generalizes
the previously known problem describing the contact of a Kirchho�-Love plate with
a non-deformable obstacle.

2 The Variational Problem

Let Ω ⊂ R2 be a bounded with a smooth boundary Γ, which consists of two
continuous curves Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, mes(Γ0) > 0, mes(Γ1) > 0. Denote
by ν = (ν1, ν2) the external unit normal vector to Γ. For simplicity, suppose the
plate has a uniform thickness 2h. Let us assign a three-dimensional Cartesian space
{x1, x2, z} with the set {Ω} × {0} ⊂ R3 corresponding to the middle plane of the
plate.

Denote by χ = χ(x) = (W,w) the displacement vector of the mid-surface points
(x ∈ Ω), by W = (w1, w2) the displacements in the plane {x1, x2}, and by w the
displacements along the axis z (de�ections). The strain and integrated stress tensors
are denoted by εij = εij(W ), σij = σij(W ), respectively [5]:

εij(W ) =
1

2
(
∂wj

∂xi
+

∂wi

∂xj
), σij(W ) = aijklεkl(W ), i, j = 1, 2,
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where {aijkl} is the given elasticity tensor, assumed to be symmetric and positive
de�nite:

aijkl = aklij = ajikl, i, j, k, l = 1, 2, aijkl ∈ L∞(Ω),

aijklξijξkl ≥ c0|ξ|2, ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const > 0.

A summation convention over repeated indices is used in the sequel. Next we denote
the bending moments by formulas [5]

mij(w) = −dijklw,kl , i, j = 1, 2, (w,kl =
∂2w

∂xk∂xl
)

where tensor {dijkl} has the same symmetry, boundedness, and positive de�niteness
characteristics as tensor {aijkl}. LetB(· , ·) be a bilinear form de�ned by the equality

B(χ, χ̄) =

∫
Ω

{
σij(W ) εij(W̄ )−mij(w)w̄,ij

}
dx, (1)

where χ = (W,w), χ̄ = (W̄ , w̄).
Introduce the Sobolev spaces

H1,0
Γ0

(Ω) =
{
v ∈ H1(Ω)

∣∣∣ v = 0 on Γ0

}
,

H2,0
Γ0

(Ω) =
{
v ∈ H2(Ω)

∣∣∣ v = ∂v
∂ν = 0 on Γ0

}
,

H(Ω) = H1,0
Γ0

(Ω)2 ×H2,0
Γ0

(Ω).

It is well known that the standard expression for a potential energy functional of a
Kirchho��Love plate has the following representation

Π(χ) =
1

2
B(χ, χ)−

∫
Ω

F χdx, χ = (W,w),

where vector F = (f1, f2, f3) ∈ L2(Ω)
3 describes the body forces [5]. Note that the

following inequality providing coercivity of functional Π(χ)

B(χ, χ) ≥ c∥χ∥2 ∀ χ ∈ H(Ω), (∥χ∥ = ∥χ∥H(Ω)) (2)

with a constant c > 0 independent of χ, holds for the bilinear form B(·, ·) [5].
Let us start with the description of a non-deformable obstacle. The obstacle has

a special shape such that the plate in the initial state is in contact along a strip
of the width l, where l ∈ R is a �xed number such that 0 < l ≤ 2h. Namely, we
specify the obstacle by the following set:

{(x1, x2, z) | (x1, x2) ∈ Γ1, z ∈ (−∞,−h+ l]}.

Obviously, for l = 2h we obtain full contact along the lateral surface of the plate,
studied in [28].

In order to introduce boundary conditions of the Signorini type, we recall the
well-known relations of the Kirchho�-Love model for displacements of points
(x, z) ∈ Ω× [−h, h] :

W z(x, z) = W (x)− z∇w, |z| ≤ h, wz(x, z) = w(x). (3)
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Taking into account (3) and arguing as in [5, 28], we impose the following condition
for displacements on Γ1 describing the non-penetration of plate points into a non-
deformable obstacle. We require the following relations to be satis�ed

Wν − z
∂w

∂ν
≤ 0 on Γ1, z ∈ [−h,−h+ l], (4)

whereWν = wiνi. The inequality (4), due to linearity, can be equivalently represented
as a system of two inequalities

Wν + h
∂w

∂ν
≤ 0, Wν + (h− l)

∂w

∂ν
≤ 0 on Γ1. (5)

Now we can introduce the following set of admissible functions

Kl = {χ = (W,w) ∈ H(Ω) |χ satisying (4)}.

Let us formulate a variational statement of an equilibrium problem. It is required
to �nd a function ξ = (U, u) ∈ Kl, such that

Π(ξ) = inf
χ∈Kl

Π(χ). (6)

Theorem 1. The problem (6) has a unique solution.

Proof. We will apply the well known Weierstrass theorem in order to show solution
existence of the minimization problem [36]. The energy functional is coercive and
weakly lower semicontinuous on H(Ω) [5]. It is easy to see that the set Kl has
the convexity and closedness properties. These properties of the set of admissible
displacements ensure that the setKl is weakly closed. Consequently, for the minimi-
zation problem (6) all conditions of the Weierstrass theorem are satis�ed both for
the functional Π(χ) and for the set of admissible functions Kl. This means that
problem (6) has at least one solution. The functional is convex and di�erentiable,
and as a consequence the problem (6) is equivalent to the following variational
inequality

ξ ∈ Kl, B(ξ, χ− ξ) ≥
∫
Ω

F (χ− ξ)dx ∀χ ∈ Kl. (7)

Assuming that there are two di�erent solutions ξ1 and ξ2, we extract two inequalities
from the variational inequality

B(ξ1, ξ2 − ξ1) ≥
∫
Ω

F (ξ2 − ξ1)dx,

B(ξ2, ξ1 − ξ2) ≥
∫
Ω

F (ξ1 − ξ2)dx.

Adding the last two inequalities we get that

B(ξ2 − ξ1, ξ2 − ξ1) ≤ 0.

This means, in view of (2), that ξ1 = ξ2, and also entails the uniqueness of the
solution to the problem (6). □
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3 The Di�erential Statement

Let l be a �xed number such that 0 < l ≤ 2h. Let us assume that the solution
ξ = (U, u) ∈ Kl and elasticity tensors {aijkl}, {dijkl} are su�ciently smooth.
Furthermore, in addition to the prescribed properties of the solution, it is su�cient
to require that ξ ∈ H2(Ω)2 × H4(Ω). Our aim is to �nd from the variational
inequality the equilibrium equations ful�lled in Ω and optimality conditions satis�ed
on Γ1. We will apply the following Green's formulas (8) for the functions
χ = (W,w) ∈ Kl [5],∫

Ω

σij(U) εij(W )dx = −
∫
Ω

σij,j(U)wi dx+

+

∫
Γ

(
σν(U)Wν + στ (U)Wτ

)
dΓ, (8)

∫
Ω

mij(u)w,ij dx =

∫
Ω

mij,ij(u)w dx+

∫
Γ

(
tν(u)w −mν(u)

∂w

∂ν

)
dΓ, (9)

where
σν(U) = σij(U)νiνj , mν(u) = −mijνiνj ,

στ (U) = (σ1
τ (U), σ2

τ (U)) = (σ1j(U)νj , σ2j(U)νj)− σν(U)ν,

tν(u) = −mij,kτkτjνi −mij,jνi, τ = (−ν2, ν1),

Wν = wiνi, Wτ = (W 1
τ ,W

2
τ ), wi = (Wν)νi +W i

τ , i = 1, 2.

Along with the variational statement (6), one can deal with the corresponding
di�erential statement. Namely, the following theorem holds.
Theorem 2. Supposing the solution ξ = (U, u) as well as elasticity tensors {aijkl},
{dijkl} to be su�ciently smooth, the variational problem (6) is equivalent to the

following boundary value problem

−mij,ij(u) = f3 in Ω, (10)

− σij,j(U) = fi in Ω, i = 1, 2, (11)

σν(U)− 1

h
mν(u) ≤ 0, −σν(U)(h− l) +mν(u) ≤ 0 on Γ1, (12)

σν(U) ≤ 0, Uν + h
∂u

∂ν
≤ 0, Uν + (h− l)

∂u

∂ν
≤ 0 on Γ1, (13)

στ (U) = (0, 0), tν(u) = 0, σν(U)Uν +mν(u)
∂u

∂ν
= 0 on Γ1, (14)

U = (0, 0), u =
∂u

∂ν
= 0 on Γ0. (15)

Proof. Substituting χ̄ = ξ ± χ̃, where χ̃ ∈ C∞
0 (Ω)3, as a test function in (7), we

obtain the following relation∫
Ω

(σij(U) εij(W̃ )−mij(u)w̃,ij )dx =

∫
Ω

Fχ̃dx,

that is, the equilibrium equations

−mij,ij(u) = f3 in Ω, (16)

− σij,j(U) = fi in Ω, i = 1, 2, (17)



734 N.P. LAZAREV, D.Y. NIKIFOROV, AND G.M. SEMENOVA

hold in terms of distribution.
Applying Green's formulas to (7) and using (16), (17), one can show that∫

Γ

(
σν(U)(W − U)ν + στ (U)(W − U)τ−

−tν(u)(w − u) +mν(u)

(
∂w

∂ν
− ∂u

∂ν

))
dΓ ≥ 0 ∀χ = (W,w) ∈ Kl. (18)

Since Kl is a convex cone in H(Ω), one can substitute χ = λξ with λ ≥ 0 in (18)
and deduce ∫

Γ

(
σν(U)Uν + στ (U)Uτ − tν(u)u+mν(u)

∂u

∂ν

)
dΓ = 0, (19)

∫
Γ

(
σν(U)Wν + στ (U)Wτ − tν(u)w +mν(u)

∂w

∂ν

)
dΓ ≥ 0, (20)

for all χ = (W,w) ∈ Kl. Since the function χ = (W,w) ∈ Kl satis�es zero boundary
conditions on Γ0, we can rewrite (20) as follows∫

Γ1

(
σν(U)Wν + στ (U)Wτ − tν(u)w +mν(u)

∂w

∂ν

)
dΓ ≥ 0. (21)

Since the inequalities (4) does not depend on Wτ , due to arbitrariness of Wτ on
Γ1, we infer that

στ (U) = (0, 0) on Γ1.

Therefore, we can reduce (21) in the following form∫
Γ1

(
σν(U)Wν − tν(u)w +mν(u)

∂w

∂ν

)
dΓ ≥ 0 ∀χ = (W,w) ∈ Kl. (22)

By choosing functions χ = (W,w) such that W = (0, 0), ∂w
∂ν = 0 on Γ1 for (22), we

get

tν(u) = 0 on Γ1.

Now we can substitute test functions with the property w = 0, Wν + h∂w
∂ν = 0 and

∂w
∂ν ≥ 0 on Γ1

As a result, we have∫
Γ1

(
σν(U)Wν − 1

h
mν(u)Wν

)
dΓ ≥ 0. (23)

From here, since the value Wν ≤ 0 can be arbitrary, we get

σν(U)− 1

h
mν(u) ≤ 0 on Γ1.

Now, substituting into (22) test functions satisfying Wν + (h − l)∂w∂ν = 0, ∂w
∂ν ≤ 0

on Γ1, we �nd ∫
Γ1

(
−σν(U)(h− l)

∂w

∂ν
+mν(u)

∂w

∂ν

)
dΓ ≥ 0.
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Whence it follows that

− σν(U)(h− l) +mν(u) ≤ 0 on Γ1. (24)

Substituting further into (22) η = (W,w) such that w = 0, Wν ≤ 0, ∂w
∂ν = 0, it is

not di�cult to establish the inequality∫
Γ1

σν(U)Wν dΓ ≥ 0,

which means that
σν(U) ≤ 0 on Γ1. (25)

Note that due to ξ = (U, u) ∈ Kl and the following revealed relations

tν(u) = 0, σν(U) ≤ 0 on Γ1,

σν(U)− 1

h
mν(u) ≤ 0, −σν(U)(h− l) +mν(u) ≤ 0 on Γ1,

the expression σν(U)Wν +mν(u)
∂w
∂ν is non-negative on Γ1. Indeed, for the subset

Γ+
1 of Γ1, where

∂w
∂ν ≥ 0 a.e. on Γ+

1 , we have

σν(U)Wν +mν(u)
∂w

∂ν
=

= σν(U)

(
Wν + h

∂w

∂ν

)
+ (mν(u)− hσν(U))

∂w

∂ν
≥ 0, (26)

and for the subset Γ−
1 of Γ1, where

∂w
∂ν ≤ 0 a.e. on Γ−

1 , we get

σν(U)Wν +mν(u)
∂w

∂ν
=

= σν(U)

(
Wν + (h− l)

∂w

∂ν

)
+ (−σν(U)(h− l) +mν(u))

∂w

∂ν
≥ 0. (27)

Now we recall the relation (19). Since the integrand of (19) is non-negative a.e. on
Γ. Therefore, we get

σν(U)Uν +mν(u)
∂u

∂ν
= 0 on Γ1.

Conversely, in order to obtain from (10)�(15) the variational inequality (7) we
multiply (10) by (u − w) and each equality of (11) by corresponding (ui − wi),
i = 1, 2, where W = (w1, w2), w such that χ = (W,w) ∈ Kl. Then after integrating
over Ω and summing, we get

−
∫
Ω

(σij,j(U)(U −W ) +mij,ij(u)(w − u))dx =

∫
Ω

F (χ− ξ)dx.

At this point, recalling the Green formulas, we get∫
Ω

(
σij(U) εij(W − U)−mij(u)(w − u),ij

)
dx−

−
∫
Γ

(
σν(U)(Wν − Uν) + στ (U)(Wτ − Uτ)

)
dΓ+

+

∫
Γ

(
tν(u)(w − u)−mν(u)(

∂w

∂ν
− ∂u

∂ν
)

)
dΓ =

∫
Ω

F (χ− ξ)dx. (28)
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Taking into account that στ (U) = (0, 0) on Γ1, and zero boundary conditions for
ξ, χ on Γ0, we can represent the sum of integrals over Γ in the left side of (28) as
follows

I =

∫
Γ1

(
tν(u)(w − u)−mν(u)(

∂w

∂ν
− ∂u

∂ν
)− σν(U)(Wν − Uν)

)
dΓ. (29)

Then bearing in mind the equalities στ (U) = (0, 0), tν(u) = 0 on Γ1, we can rewrite
(29) as the following sum

I =

∫
Γ1

(
−mν(u)(

∂w

∂ν
− ∂u

∂ν
)− σν(U)(Wν − Uν)

)
dΓ. (30)

As we can see the integrand in the last integral is nonpositive because of χ ∈ Kl

and relations (12)�(15). It remains to note that since I ≤ 0, the equality (28) yields
the variational inequality (7). The theorem is proved. □

Remark 1. We can note that in the framework of the theorem 1 instead of the �xed

number l the existence and uniqueness can be proved for some function l ∈ L2(Γ1)
satisfying 0 < l ≤ 2h a.e. on Γ1. Furthermore, bearing in mind reasonings of the

proof to the theorem 2 it can be seen that same result is true for some continuous

l ∈ C(Γ1) such that 0 < l(x) < 2h for all x ∈ Γ1.

4 Passage to the limit as l → 2h

Passages to the limit as parameters characterizing the sizes or relative positions
of structural elements, or the distances between objects inside solid bodies have
been studied, for example, in [37, 38, 39, 40, 41]. The dependence of solutions on
perturbation of the geometry of objects within the framework of nonlinear models
of solid mechanics is also of scienti�c interest, see [42, 43] etc. In this section we
will show that the previously studied problem in [28], which corresponds to the
value l = 2h, is a limit problem for a family of problems with di�erent values
l ∈ (0, 2h]. Namely, we consider the sequence of functions {ln} ⊂ L2(Γ1), satisfying
the properties 0 < ln ≤ 2h and ln → 2h in the space L2(Γ1).

Let us consider a family of variational problems with di�erent sets of admissible
displacements Kln , n ∈ N:

ξn ∈ Kln , B(ξn, χ− ξn) ≥
∫
Ω

F (χ− ξn)dx ∀χ ∈ Kln . (31)

Substituting the test function χ = (0, 0, 0) into (31) we obtain the inequality

B(ξn, ξn) ≤
∫
Ω

Fξndx.

Hence, we get the following uniform estimate

∥ξn∥ ≤ C,

where C > 0 does not depend on n ∈ N. The re�exivity of the space allows us to
extract a subsequence ξnk

that weakly converges in H(Ω) to some function ξ̃. As

the next step we show that ξ̃ = (Ũ , ũ) ∈ K2h. Since ln → 2h converges strongly in
L2(Γ1), we can exract a subsequence lnk

that converges almost everywhere on Γ1 to
2h. Extracting a subsequence again if necessary, we assume that {ξnk

} converges on
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Γ1 almost everywhere. Based on the properties of these convergent subsequences,
we can pass to the limit as k → ∞ in the following inequalities:

Unk
ν + h

∂unk

∂ν
≤ 0, Unk

ν + (h− lnk
)
∂unk

∂ν
≤ 0 a.e. on Γ1.

As limiting relations we obtain

Ũν + h
∂ũ

∂ν
≤ 0, Ũν − h

∂ũ

∂ν
≤ 0 a.e. on Γ1.

That is ξ̃ ∈ K2h. Let η̃ ∈ K2h be an arbitrary test function, it is obvious that in
this case η̃ ∈ Kln , for all n ∈ N. Therefore, passing to the limit as n → ∞ in the
inequalities

ξn ∈ Kln , B(ξn, η̃ − ξn) ≥
∫
Ω

F (η̃ − ξn)dx

with the �xed function η̃, we get

B(ξ̃, η̃ − ξ̃) ≥
∫
Ω

F (η̃ − ξ̃)dx. (32)

Thus, due to the uniqueness of the solution to the variational inequality, it follows
from (32) that ξ̃ is a solution to the problem (6) corresponding to the value l = 2h
for K2h.
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