

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ Siborian Electronic Mathematical Paparta

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru ISSN 1813-3304

Vol. 21, No. 2, pp. 645-653 (2024) https://doi.org/10.33048/semi.2024.21.044 УДК 512.54,519.17 MSC 20D60,05C25

GROUPS WITH SYMMETRIC NON-COMMUTING GRAPHS

A. ABDOLLAHI

Communicated by YU.L. TRAKHININ

Abstract: In this paper we characterize non-abelian finite 2-generator groups G whose non-commuting graphs are $\operatorname{Aut}(G)$ -symmetric. We also find some general results on these groups. These partially answer Problem 31 posed in Peter Cameron's home page, old problems.

Keywords: non-commuting graph; automorphism group; symmetric graphs.

1 Introduction

Problem 31 of [3] is the following:

Question 1. Which finite groups have the property that the automorphism group acts transitively on the set of ordered pairs of non-commuting elements?

Every abelian group trivially satisfies the property stated in Question 1. Let G be a finite non-abelian group satisfying the property stated in Question 1. This property means that the non-commuting graph Γ_G is $\operatorname{Aut}(G)$ -symmetric, where $\operatorname{Aut}(G)$ is the automorphism group of G, Γ_G is the graph whose vertex set is $G \setminus Z(G)$ (Z(G) is the center of G) and the edge set is the set of all non-commuting pairs of elements of G (see [1] or [2]) and recall that a graph Γ is called K-symmetric for a subgroup K of $\operatorname{Aut}(\Gamma)$ if K acts

Abdollahi, A., Groups with symmetric non-commuting graphs.

^{© 2024} Abdollahi A...

Received June, 24, 2021, published September, 28, 2024.

transitively on the set of ordered pairs of adjacent vertices of Γ . Pablo Spiga has pointed out that the group G must be a p-group of Frattini class 2, for some prime p (see [3]). We generalize this result by proving that the group G is nilpotent of class 2 and G/Z(G) is elementary abelian (see Lemma 1, below). We also prove some general properties of these groups (see Lemma 1, below): for example, it is proved that every two non-abelian 2generator subgroups of G are isomorphic and every non-abelian 2-generator subgroup H of G has the same property as G.

2 Proofs

Some properties of the groups in question are as follows:

Lemma 1. Let G be a finite non-abelian group having the property that the automorphism group of G acts transitively on the set of ordered pairs of non-commuting elements. Then

- (1) Aut(G) acts transitively on $G \setminus Z(G)$.
- (2) for all $x, y \in G \setminus Z(G)$, we have |x| = |y|.
- (3) for all $x, y \in G \setminus Z(G)$, we have $C_G(x) \cong C_G(y)$.
- (4) every two non-abelian 2-generator subgroups of G are isomorphic and every non-abelian 2-generator subgroup H of G has the same property as G, i.e., the automorphism group of H acts transitively on the set of ordered pairs of non-commuting elements of H.
- (5) G is a p-group for some prime p.
- (6) $\Phi(G) \leq Z(G)$ ($\Phi(G)$ denotes the Frattini subgroup of G). In particular, G is nilpotent of class 2 and G/Z(G) is elementary abelian.

Proof. (1) Let $x, y \in G \setminus Z(G)$. Then there exist elements x' and y' such that $xx' \neq x'x$ and $yy' \neq y'y$. Thus by hypothesis, there exists $\alpha \in \operatorname{Aut}(G)$ such that $(x, x')^{\alpha} = (y, y')$. It follows that $x^{\alpha} = y$. This completes the proof of (1).

(2) This easily follows from (1).

(3) By (1), there exists $\alpha \in \operatorname{Aut}(G)$ such that $x^{\alpha} = y$. Now it is easy to see that $C_G(y) = (C_G(x))^{\alpha}$. On the other hand, clearly we have $C_G(x) \cong (C_G(x))^{\alpha}$. This completes the proof of (3).

(4) Let H_1 and H_2 be two non-abelian 2-generator subgroups of G. Then $H_1 = \langle x, x' \rangle$ and $H_2 = \langle y, y' \rangle$ for some elements $x, x', y, y' \in G$. Thus by hypothesis, there exists $\alpha \in \operatorname{Aut}(G)$ such that $(x, x')^{\alpha} = (y, y')$. It follows that $x^{\alpha} = y$ and $x'^{\alpha} = y'$. Therefore $H_1^{\alpha} = H_2$ and $H_1 \cong H_2$. Now let (x_1, x_2) and (y_1, y_2) be two non-commuting pairs with entries from H. By hypothesis, there exists $\beta \in \operatorname{Aut}(G)$ such that $(x_1, x_2)^{\beta} = (y_1, y_2)$. By the first part of (4), $\langle x_1, x_2 \rangle^{\beta} = \langle y_1, y_2 \rangle \cong H$ and since $\langle x_1, x_2 \rangle$ and $\langle y_1, y_2 \rangle$ are subgroups of H and these groups are all finite, it follows that $\langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle = H$. Hence the restriction of β to H, is an automorphism of H. This completes the proof of (4).

(5) Since G is non-abelian, there exists a non-central element x in G. Then

 $xy \neq yx$ for some $y \in G$. Since x is of finite order, there are commuting elements $x_1, \ldots, x_n \in G$ of prime power orders such $x = x_1 \cdots x_n$. It follows that $x_iy \neq yx_i$ for some i. This implies that G contains a non-central element of p-power order for some prime p. It follows from (2) that every element in $G \setminus Z(G)$ has the same p-power order. Now let $z \in Z(G)$ and $t \in G \setminus Z(G)$, where $t^{p^s} = 1$. Then $tz \in G \setminus Z(G)$ and $(tz)^{p^s} = 1$. Since $z \in Z(G)$, $1 = t^{p^s} z^{p^s} = z^{p^s}$. This completes the proof of (5).

(6) Suppose, for a contradiction, that there exists $x \in \Phi(G) \setminus Z(G)$. Let $X = \{x_1, \ldots, x_d\}$ be a minimal generating set for G, that is no proper subset of X generates G. Since $\Phi(G)$ is the set of non-generators of G, $\Phi(G) \cap X = \emptyset$. Since G is not abelian, there exists $i \in \{1, \ldots, d\}$ such that $x_i \in G \setminus Z(G)$. By (1), $x^{\alpha} = x_i$ for some $\alpha \in \operatorname{Aut}(G)$. Since $\Phi(G)$ is a characteristic subgroup of G, $x_i \in \Phi(G)$ which is a contradiction. Therefore $\Phi(G) \leq Z(G)$. By part (5), G is a finite p-group for some prime p. Thus $\Phi(G) = G^p G'$ is a

By part (5), G is a finite p-group for some prime p. Thus $\Phi(G) = G^{p}G^{r}$ is a subgroup of Z(G). This implies that G is nilpotent of class 2 and G/Z(G) is elementary abelian.

Note that if G is a nilpotent p-group of class 2 (p a prime number), then its commutator subgroup G' is non-trivial and contained in the center of G. We shall make frequent use without reference of well-known relations such as

$$[x, yz] = [x, y][x, z], \ [x, y^r] = [x^r, y] = [x, y]^r, \ (xy)^n = x^n y^n [y, x]^{\frac{n(n-1)}{2}}$$

for all $x, y, z \in G$, $n \in \mathbb{N}$ and $r \in \mathbb{Z}$.

For a prime number p, an integer n > 0 such that $p^n > 2$ and an arbitrary integer d > 1, we denote by $\mathcal{G}_d(p^n)$ the free group of rank d in the variety $\mathcal{V}(p^n)$ of groups of class at most 2 satisfying the laws $x^{p^n} = [x, y]^p = 1$. Lemma 1(6) show that any finite group G whose non-commuting graph is Aut(G)-symmetric is in the variety $\mathcal{V}(p^n)$ for some prime p and integer $n \ge 1$. Thus G is isomorphic to a quotient of $\mathcal{G}_d(p^n)$. The following result shows that free groups in the latter variety is a good source for the groups in question.

Theorem 1. The non-commuting graph of $\mathcal{G}_d(p^n)$ is $\operatorname{Aut}(\mathcal{G}_d(p^n))$ -symmetric.

Proof. Let $\mathcal{G}_d = \mathcal{G}_d(p^n)$ and suppose that x_1, \ldots, x_d are free generators of \mathcal{G}_d . Suppose that $X = x_1^{i_1} \cdots x_d^{i_d} c_1$ and $Y = x_1^{j_1} \cdots x_d^{j_d} c_2$ $(c_1, c_2 \in \Phi(\mathcal{G}_d)$ and $i_1, \ldots, i_d, j_1, \ldots, j_d$ in \mathbb{Z}) are two non-commuting elements of \mathcal{G}_d . Now since \mathcal{G}'_d is of exponent p and

$$1 \neq [X,Y] = \prod_{k < \ell} [x_k, x_\ell]^{i_k j_\ell - i_\ell j_k},$$

there exist k and ℓ , $k < \ell$ such that p does not divide $K = i_k j_\ell - i_\ell j_k$. For any $x \in \mathcal{G}_d$, let \overline{x} denote $x\Phi(\mathcal{G}_d)$. We may write \overline{X} and \overline{Y} additively in the vector space $\mathcal{G}_d/\Phi(\mathcal{G}_d)$ over \mathbb{Z}_p :

$$\overline{X} = i_1 \overline{x_1} + \dots + i_d \overline{x_d}$$
 and $\overline{Y} = j_1 \overline{x_1} + \dots + j_d \overline{x_d}$.

It follows that

 $j_{\ell}\overline{X} - i_{\ell}\overline{Y} = K\overline{x_k} + \overline{x} \text{ and } i_k\overline{Y} - j_k\overline{X} = K\overline{x_{\ell}} + \overline{y},$

for some $x, y \in \langle x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{\ell-1}, x_{\ell+1}, \ldots, x_d \rangle$. As gcd(K, p) = 1, it follows that

$$\overline{x_k}, \overline{x_\ell} \in \langle \overline{x_1}, \dots, \overline{x_{k-1}}, \overline{X}, \overline{x_{k+1}}, \dots, \overline{x_{\ell-1}}, \overline{Y}, \overline{x_{\ell+1}}, \dots, \overline{x_d} \rangle.$$

Hence

 $\mathcal{G}_d = \langle x_1, \dots, x_{k-1}, X, x_{k+1}, \dots, x_{\ell-1}, Y, x_{\ell+1}, \dots, x_d \rangle.$

Therefore, as \mathcal{G}_d is free in the variety, there exists an automorphism $\Psi_{(X,Y)}$ of \mathcal{G}_d which maps x_1 to X, x_2 to Y and x_i to x_i for all i > 2. Now let X' and Y' be another two non-commuting elements of \mathcal{G}_d . Then $\Psi_{(X',Y')}\Psi_{(X,Y)}^{-1} \in$ $\operatorname{Aut}(\mathcal{G}_d)$ is sending the pair (X,Y) to (X',Y'). This completes the proof. \Box

Lemma 2. Let G be a finite non-abelian p-group (p > 2) having the property that the automorphism group acts transitively on the set of ordered pairs of non-commuting elements. Suppose that $x_1, \ldots, x_\ell \in G$ are such that $x_1Z(G), \ldots, x_\ell Z(G)$ form a basis for G/Z(G). Then $\langle x_1^p, \ldots, x_\ell^p \rangle = \langle x_1^p \rangle \times$ $\cdots \times \langle x_\ell^p \rangle$.

Proof. Let $x_1^{pi_1} \cdots x_{\ell}^{pi_{\ell}} = 1$ for some integers i_1, \ldots, i_{ℓ} . Suppose that $i_k = p^{\alpha_k} j_k$, where $gcd(j_k, p) = 1$ $(k = 1, \ldots, \ell)$. Then, since G' is of exponent p > 2 and G is nilpotent of class 2, we can write

$$1 = x_1^{pi_1} \cdots x_{\ell}^{pi_{\ell}} = \left(x_1^{s_1} \cdots x_{\ell}^{s_{\ell}}\right)^{p^{1+\alpha_i}}$$

where $\alpha_i = \min\{\alpha_k \mid k = 1, ..., \ell\}$ and $s_k = p^{\alpha_k - \alpha_i} j_k$ $(k = 1, ..., \ell)$. Since $\gcd(s_i, p) = 1$ and $x_1 Z(G), ..., x_\ell Z(G)$ form a basis for G/Z(G), we have that $x = x_1^{s_1} \cdots x_\ell^{s_\ell} \notin Z(G)$. Now it follows from Lemma 1(2) that $|x_k| = |x| = p^n$ (for some integer $n \ge 1$) for each $k = 1, ..., \ell$. Thus p^n divides $p^{\alpha_i + 1}$ and so $n - 1 \le \alpha_k$ for all $k = 1, ..., \ell$. This completes the proof.

Theorem 2. A finite non-abelian 2-generator group G has the property that the automorphism group acts transitively on the set of ordered pairs of noncommuting elements if and only if $G \cong \mathcal{G}_2(p^n)$ which is isomorphic to

$$\mathcal{G} = \langle x, y \mid x^{p^n} = y^{p^n} = [x, y]^p = [x, y, y] = [x, y, x] = 1 \rangle,$$

for some prime number p and integer n > 0 with $p^n > 2$ or $G \cong Q_8$, the quaternion group of order 8.

Proof. Throughout we denote $\mathcal{G}_2(p^n)$ by \mathcal{G} . We first prove the sufficiency. It follows from Theorem 1 that the non-commuting graph of \mathcal{G} is $\operatorname{Aut}(\mathcal{G})$ -symmetric.

Since every two non-commuting elements of Q_8 generate the group, it is easy by using the following presentation of Q_8

$$\langle x, y \mid x^4 = 1, x^2 = y^2, x^y = x^{-1} \rangle$$

648

to see that $\operatorname{Aut}(Q_8)$ acts transitively on the ordered pairs of non-commuting elements of Q_8 .

Now we are going to show the necessity. Let $G = \langle a, b \rangle$. By Lemma 1(5), G is a finite p-group for some prime number p. Also it follows from Lemma 1(6), that $G/Z(G) \cong C_p \times C_p$, since G is not abelian. On the other hand, as G is 2-generator and non-abelian, $G/\Phi(G) \cong C_p \times C_p$. Thus by Lemma 1(6), $Z(G) = \Phi(G) = G'G^p$. This implies that $Z(G) = \langle a^p, b^p, [a, b] \rangle$. By Lemma 1(2), we have $|a| = |b| = p^n$ for some integer $n \ge 1$ (if p = 2, then since G is not abelian, it follows from Lemma 1(5) that $n \ge 2$). Note that, since $G^p \le Z(G), [a, b]^p = [a^p, b] = 1$ and so |[a, b]| = p, since G is not abelian. We first prove that either $\langle a^p \rangle \cap \langle b^p \rangle = 1$ or $G \cong Q_8$. Suppose that $a^{pi}b^{pj} =$ 1 for some $i, j \in \mathbb{Z}$. Let $pi = p^t i'$ and $pj = p^s j'$, where $i', j' \in \mathbb{Z}$ and $\gcd(i'j', p) = 1$. Assume $s \ge t$ and note that $t \ge 1$. Then

$$\left(a^{i'}b^{p^{s-t}j'}\right)^{p^t} = a^{p^ti'}b^{p^sj'}\left[b^{p^{s-t}j'}, a^{i'}\right]^{\frac{p^t(p^t-1)}{2}} = \left[b^{p^{s-t}j'}, a^{i'}\right]^{\frac{p^t(p^t-1)}{2}}.$$
 (#)

Suppose that p > 2 or $s \ge 2$ or s > t. Then it follows from (#) that

$$[b^{p^{s-t}j'}, a^{i'}]^{\frac{p^t(p^t-1)}{2}} = [a, b]^{-j'i'\frac{p^s(p^t-1)}{2}} = 1.$$

It follows that $|a^{i'}b^{p^{s-t}j'}|$ divides p^t . Now since gcd(i', p) = 1, $[a^{i'}b^{p^{s-t}j'}, b] \neq 1$. It follows that $a^{i'}b^{p^{s-t}j'} \in G \setminus Z(G)$ and so by Lemma 1(2), $|a^{i'}b^{p^{s-t}j'}| = |a| = p^n$. Therefore $n \leq t \leq s$ and so $a^{pi} = b^{pj} = 1$. Hence, in this case, we have that $\langle a^p \rangle \cap \langle b^p \rangle = 1$. Thus we may assume p = 2 and s = t = 1. It follows that $(a^i)^2(b^j)^2 = 1$ and i and j are odd. Without loss of generality we may assume that i = j = 1. Since (a, b), (ab, b) and (ab, a) are ordered pairs of non-commuting elements of G, there exists $\alpha, \beta \in Aut(G)$ such that $(a, b)^{\alpha} = (ab, b)$ and $(a, b)^{\beta} = (ab, a)$. It follows that

$$1 = (a^2b^2)^{\alpha} = (ab)^2b^2 = a^2b^4[a,b] = b^2[a,b],$$

$$1 = (a^2b^2)^{\beta} = (ab)^2a^2 = a^4b^2[a,b] = a^2[a,b].$$

Thus $a^2 = b^2 = [a, b]$ and $a^4 = b^4 = 1$ and so $G \cong Q_8$. From now on, suppose that

$$\langle a^p \rangle \cap \langle b^p \rangle = 1. \tag{1}$$

We now show that

$$\langle [a,b] \rangle \cap \langle a^p, b^p \rangle = 1.$$
 (II)

It is enough to show that $[a, b] \notin \langle a^p, b^p \rangle$, since |[a, b]| is prime. Suppose, for a contradiction, that

$$[a,b] = a^{pi}b^{pj} \text{ for some } i,j \in \mathbb{Z}.$$
 (*)

First assume that p > 2. Therefore a and b are of odd order and so (a, b), (a^2, b) and (a, b^2) are ordered non-commuting pairs of elements of G. Thus, by hypothesis, there exist $\alpha, \beta \in \operatorname{Aut}(G)$ such that $(a, b)^{\alpha} = (a, b^2)$ and $(a, b)^{\beta} = (a^2, b)$. It follows from (*) that $[a, b]^{\alpha} = (a^{pi}b^{pj})^{\alpha}$ and $[a, b]^{\beta} = (a^{pi}b^{pj})^{\beta}$. Therefore $[a, b]^2 = a^{pi}b^{2pj}$ and $[a, b]^2 = a^{2pi}b^{pj}$. On the other hand, (*)

A. ABDOLLAHI

implies that $[a, b]^2 = a^{2pi}b^{2pj}$ (note that $a^p, b^p \in Z(G)$). These relations yield that $a^{pi} = b^{pi} = 1$ and so [a, b] = 1, a contradiction. Hence $\langle [a, b] \rangle \cap \langle a^p, b^p \rangle = 1$, if p > 2.

Now suppose that p = 2. Since (a, b) and (b, a) are ordered non-commuting pairs of elements in G, there exists an automorphisms $\alpha \in \operatorname{Aut}(G)$ such that $(a, b)^{\alpha} = (b, a)$. It follows from (*) that $[b, a] = b^{2i}a^{2j}$. Since $[a, b]^2 = 1$, $a^{2i}b^{2j} = a^{2j}b^{2i}$ and so $a^{2(i-j)}b^{2(j-i)} = 1$. It follows from (I), we have that $b^{2(j-i)} = 1$. Thus $b^{2i} = b^{2j}$ and so

$$[a,b] = a^{2i}b^{2i}. (III)$$

Now since (a, b), (ab, b) and (a, ab) are non-commuting pairs of elements of G, there exist automorphisms $\beta, \gamma \in \operatorname{Aut}(G)$ such that $(a, b)^{\beta} = (ab, a)$ and $(a, b)^{\gamma} = (a, ab)$. Now it follows from (*III*) that $[ab, b] = (ab)^{2i}b^{2i}$ and $[a, ab] = a^{2i}(ab)^{2i}$. Since [a, b] = [ab, b] = [a, ab], we have that $b^{2i}[b, a]^{i(2i-1)} =$ $a^{2i}[b, a]^{i(2i-1)} = 1$ and so $a^{2i}b^{2i} = [b, a]^{2i(2i-1)} = 1$. Hence [a, b] = 1, a contradiction.

Now it follows from (I) and (II), that

$$Z(G) = \langle a^p \rangle \times \langle b^p \rangle \times \langle [a, b] \rangle.$$

Therefore $|Z(G)| = p^{2n-1}$ and $|G| = p^{2n+1}$. Now by von Dyck's theorem, G is an epimorphic image of \mathcal{G} and since $|G| = |\mathcal{G}|, G \cong \mathcal{G}$. This completes the proof.

We can now produce a further number of examples.

Theorem 3. Let G be a finite 2-generated non-abelian group whose noncommuting graph is $\operatorname{Aut}(G)$ -symmetric. If G is of exponent q and A is any finite abelian group of exponent dividing q, and not equal to q whenever $G \cong$ Q_8 , then the non-commuting graph of $G \times A$ is also $\operatorname{Aut}(G \times A)$ -symmetric.

Proof. By Theorem 2, $q = p^n$ for some prime p and integer n > 0. Let $A = C_{p^{n_1}} \times \cdots \times C_{p^{n_k}}$. If $G \not\cong Q_8$, then $G \times A$ has the following presentation:

$$\langle x, y, a_1, \dots, a_k \mid x^{p^n} = y^{p^n} = [x, y]^p = [x, y, x] = [x, y, y] = [a_i, a_j] =$$

= $[a_i, x] = [a_i, y] = a_i^{p^{n_i}} = 1 \ \forall i, j \rangle,$

and if $G \cong Q_8$, then $G \times A$ has the following presentation

$$\langle x, y, a_1, \dots, a_k \mid x^4 = 1, x^2 = y^2, x^y = x^{-1},$$

 $[a_i, a_j] = [a_i, x] = [a_i, y] = a_i^2 = 1; \forall i, j \rangle.$

It is now easy to see by von Dyck's theorem and Lemma 1(2) that for any two non-commuting elements $x_1, x_2 \in \langle x, y \rangle$ and any two elements $a, b \in \langle a_1, \ldots, a_k \rangle$, the map α which is defined by $x \mapsto x_1 a, y \mapsto x_2 b, a_i \mapsto a_i$ for all *i*, can be extended to an automorphism of $G \times A$. From this, it now follows that the non-commuting graph of $G \times A$ is Aut $(G \times A)$ -symmetric. \Box

Remark 1. For any two non-commuting elements x and y in Q_8 , we have $x^2 = y^2 = [x, y]$.

650

We can give the classification of finite non-abelian 2-groups G having a subgroup isomorphic to Q_8 whose non-commuting graphs are $\operatorname{Aut}(G)$ symmetric.

Theorem 4. Let G be a finite non-abelian 2-group having a subgroup isomorphic to Q_8 . Then the non-commuting graph of G is Aut(G)-symmetric if and only if $G \cong Q_8 \times E$ for some elementary abelian 2-group E.

Proof. We prove that G is a Dedekind group. Let x and y be two noncommuting elements of G. Then it follows from Lemma 1(2) and Theorem 2 that $\langle x, y \rangle \cong Q_8$. Now by Remark 1 we have that $x^2 = [x, y]$ which implies that $x^y = x^3$. Hence $\langle x \rangle \trianglelefteq G$ for all $x \in G$ and so every subgroup of G is normal. Now by a famous result of Dedekind-Baer (see 5.3.7 of [4]) that $G \cong Q_8 \times E$ for some elementary abelian 2-group E. The converse follows from Theorem 3.

3 3-Generator groups G whose non-commuting graphs are Aut(G)-symmetric

In this section we study groups with the property of the title of the section and we find some properties of them.

Theorem 5. Let G be a finite non-abelian 3-generator group having the property that the automorphism group acts transitively on the set of ordered pairs of non-commuting elements. Then $C_G(x) = \langle x \rangle Z(G)$ for all $x \in G \setminus Z(G)$.

Proof. Let $x \in G \setminus Z(G)$. By Lemma 1(5)-(6), G is a p-group (for some prime p) of class 2 and $x \notin \Phi(G)$. Then Burnside's basis theorem implies that $G = \langle x, y, z \rangle$ for some $y, z \in G$. Suppose, for a contradiction, that $C_G(x) \neq \langle x \rangle Z(G)$. Since G/Z(G) is elementary abelian, it follows that $y^i z^j \in C_G(x)$ for some integers i and j such that $0 \leq i \leq j < p$ with $(i, j) \neq (0, 0)$. Thus either $G = \langle x, y^i z^j, z \rangle$ or $G = \langle x, y^i z^j, y \rangle$. Therefore, without loss of generality, we may assume that [x, y] = 1. Since x is not central, $[x, z] \neq 1$. If $C_G(z) = \langle z \rangle Z(G)$, then by Lemma 1(1) and (3), $C_G(x) = \langle x \rangle Z(G)$, a contradiction. Therefore $x^\ell y^k \in C_G(z) \setminus \langle z \rangle Z(G)$ for some integers ℓ and k such that $0 \leq \ell \leq k < p$ with $(\ell, k) \neq (0, 0)$. Since $[x, z] \neq 1$, $k \neq 0$ and so $G = \langle x, x^\ell y^k, z \rangle$ and $x^\ell y^k \in Z(G)$, a contradiction. This completes the proof.

For a finite group G, we denote by d(G) the minimum number of elements of a generating set of G.

Lemma 3. Let G be a non-abelian nilpotent group of class 2. If d(G) = 3, then there exist pairwise non-commuting elements x, y and z such that $G = \langle x, y, z \rangle$.

Proof. Let $G = \langle a, b, c \rangle$. Since G is not abelian, we may assume that $a \in G \setminus Z(G)$. Thus a does not commute with either b or c. Thus we may assume that $[a, b] \neq 1$. Suppose that [a, c] = 1. Then as G is nilpotent of class 2,

A. ABDOLLAHI

 $[a, bc] = [a, b][a, c] = [a, b] \neq 1$. Since $G = \langle a, b, bc \rangle$, if $[b, bc] \neq 1$, we are done. Thus we may assume that [b, bc] = 1. Now we have $[ab, bc] = [a, bc] \neq 1$ and as $G = \langle a, ab, bc \rangle$, we are done. Therefore we may assume that $[a, c] \neq 1$. If $[b,c] \neq 1$, the proof is complete. If [b,c] = 1, since $G = \langle a, ab, c \rangle$ the proof completes.

Lemma 4. Let G be a 3-generator nilpotent group of class two whose derived subgroup is of prime exponent p. Then $G' = \{[x, y] \mid x, y \in G\}$.

Proof. Let $G = \langle a, b, c \rangle$. Then, since G is nilpotent of class two, G' = $\langle [a,b], [a,c], [b,c] \rangle$. As $G' \leq Z(G)$, every element of G' can be written as $[a,b]^{i}[a,c]^{j}[b,c]^{k}$. It is enough to show that there are elements $x, y \in G$ such that $[x, y] = [a, b]^i [a, c]^j [b, c]^k$. If $p \mid j$, then we have

$$[a,b]^{i}[a,c]^{j}[b,c]^{k} = [a,b]^{i}[b,c]^{k} = [a^{j}c^{-k},b]$$

and we are done. Now suppose $p \nmid j$ and so there is an integer j' such that $p \mid (jj'-1)$. Thus we may write

$$[a,b]^{i}[a,c]^{j}[b,c]^{k} = [a,b^{i}c^{j}][b^{k},c]^{jj'} = [a,b^{i}c^{j}][b^{kj'},b^{i}c^{j}] = [ab^{kj'},b^{i}c^{j}].$$

is completes the proof.

This completes the proof.

Lemma 5. Let G be a finite non-abelian p-group having the property that the automorphism group acts transitively on the set of ordered pairs of noncommuting elements. If d(G) = 3 and N is a characteristic subgroup of G, then either $G' \leq N$ or $G' \cap N = 1$.

Proof. Suppose that $G' \cap N \neq 1$. Then by Lemma 4, there exist $x, y \in G$ such that $1 \neq [x, y] \in N$. Now let a and b are two arbitrary elements of G such that $1 \neq [a, b]$. By hypothesis, there exists an automorphism α of G such that $[a,b] = [x,y]^{\alpha}$. Since $N^{\alpha} = N$, we have that $[a,b] \in N$. This completes the proof.

Lemma 6. Let G be a finite non-abelian group whose non-commuting graph is Aut(G)-symmetric. If d(G) = 3, then $d(G') \neq 2$.

Proof. By Lemma 3, there exist pairwise non-commuting elements x, y, zgenerating G. Suppose, for a contradiction, that d(G') = 2. By Lemma 1, G is a p-group for some prime p and $G' \leq Z(G)$ is a \mathbb{Z}_p -vector space. It follows that there is a \mathbb{Z}_p -basis of size 2 for G' in $\{[x, y], [x, z], [y, z]\}$. Suppose without loss of generality that $\{[x, y], [y, z]\}$ is a basis for G'. Then $[x, y]^i [y, z]^j = [x, z]$ for some integers i and j. Then $[x^i z^{-j}, y] = [x, z]$. Since $[x, z] \neq 1$, either i or j is coprime to p. If gcd(i, p) = 1, consider the equality $[x^i z^{-j}, y^i] = [x^i z^{-j}, z]$ and if gcd(j,p) = 1, consider the equality $[x^i z^{-j}, y^{-j}] = [x, x^i z^{-j}]$. Thus if $p \nmid i$, (respectively, $p \nmid j$) $\{a = x^i z^{-j}, b = y^i, c = z\}$ (respectively, $\{a = x^i z^{-j}, b = y^i, c = z\}$) $x^i z^{-j}, b = x^{-1}, c = y^{-j}$) is a generating set for G consisting of pairwise noncommuting elements with the property that [a, b] = [a, c] so that $\{[a, b], [b, c]\}$ is a basis for G'. Now by hypothesis there is an automorphism α of G sending (a,b) to (b,a). Therefore $\{[a,b]^{\alpha}, [b,c]^{\alpha}\}$ must be a basis for G'. We have

652

 $[a,b]^{\alpha} = [a,b]^{-1}$ and $[b,c]^{\alpha} = [a,b]^{i+j}$, where $c^{\alpha} = a^{\ell} b^i c^j f$ for some $f \in \Phi(G)$. These imply that $G' = \langle [a,b] \rangle$, a contradiction. This completes the proof. \Box

Lemma 7. Let G be a finite non-abelian group whose non-commuting graph is $\operatorname{Aut}(G)$ -symmetric. If $\operatorname{d}(G) = 3$ and G' is non-cyclic then $\Phi(G) = Z(G)$.

Proof. By Lemma 1(6), $\Phi(G) \leq Z(G)$. If $\Phi(G) \neq Z(G)$, then there is a generating set $\{x, y, z\}$ for G such that $z \in Z(G)$. Since $G' \leq Z(G)$, it follows that $G' = \langle [x, y], [y, z], [x, z] \rangle$. Thus $G' = \langle [x, y] \rangle$ as [x, z] = [y, z] = 1. Hence d(G') = 1, a contradiction. This completes the proof. \Box

References

- A. Abdollahi, A. Akbari, H.R. Maimani, Non-commuting graph of a group, J. Algebra 298:2 (2006), 468-492. Zbl 1105.20016
- [2] A.R. Moghaddamfar, W. Shi, W. Zhou, A.R. Zokayi, On the noncommuting graph associated with a finite group, Sib. Math. J., 46:2 (2005) 325-332. Zbl 1096.20027
- [3] Peter Cameron's Home page, Old Problems, https://cameroncounts.github.io/web/QM/
- [4] D.J.S. Robinson, A course in the theory of groups, 2nd Ed., Springer, New York, 1995. Zbl 0836.20001

ALIREZA ABDOLLAHI DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICS AND STATISTICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-73441, IRAN Email address: a.abdollahi@math.ui.ac.ir