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Abstract: In this paper we characterize non-abelian �nite 2-gene-
rator groups G whose non-commuting graphs are Aut(G)-symmet-
ric. We also �nd some general results on these groups. These parti-
ally answer Problem 31 posed in Peter Cameron's home page, old
problems.
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1 Introduction

Problem 31 of [3] is the following:

Question 1. Which �nite groups have the property that the automorphism
group acts transitively on the set of ordered pairs of non-commuting elements?

Every abelian group trivially satis�es the property stated in Question 1.
LetG be a �nite non-abelian group satisfying the property stated in Question
1. This property means that the non-commuting graph ΓG isAut(G)-symmet-
ric, where Aut(G) is the automorphism group of G, ΓG is the graph whose
vertex set is G\Z(G) (Z(G) is the center of G) and the edge set is the set
of all non-commuting pairs of elements of G (see [1] or [2]) and recall that
a graph Γ is called K-symmetric for a subgroup K of Aut(Γ) if K acts
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646 A. ABDOLLAHI

transitively on the set of ordered pairs of adjacent vertices of Γ.
Pablo Spiga has pointed out that the group G must be a p-group of Frattini
class 2, for some prime p (see [3]). We generalize this result by proving that
the group G is nilpotent of class 2 and G/Z(G) is elementary abelian (see
Lemma 1, below). We also prove some general properties of these groups (see
Lemma 1, below): for example, it is proved that every two non-abelian 2-
generator subgroups of G are isomorphic and every non-abelian 2-generator
subgroup H of G has the same property as G.

2 Proofs

Some properties of the groups in question are as follows:

Lemma 1. Let G be a �nite non-abelian group having the property that
the automorphism group of G acts transitively on the set of ordered pairs of
non-commuting elements. Then

(1) Aut(G) acts transitively on G\Z(G).
(2) for all x, y ∈ G\Z(G), we have |x| = |y|.
(3) for all x, y ∈ G\Z(G), we have CG(x) ∼= CG(y).
(4) every two non-abelian 2-generator subgroups of G are isomorphic and

every non-abelian 2-generator subgroup H of G has the same property
as G, i.e., the automorphism group of H acts transitively on the set
of ordered pairs of non-commuting elements of H.

(5) G is a p-group for some prime p.
(6) Φ(G) ≤ Z(G) (Φ(G) denotes the Frattini subgroup of G). In particu-

lar, G is nilpotent of class 2 and G/Z(G) is elementary abelian.

Proof. (1) Let x, y ∈ G\Z(G). Then there exist elements x′ and y′ such
that xx′ ̸= x′x and yy′ ̸= y′y. Thus by hypothesis, there exists α ∈ Aut(G)
such that (x, x′)α = (y, y′). It follows that xα = y. This completes the proof
of (1).
(2) This easily follows from (1).
(3) By (1), there exists α ∈ Aut(G) such that xα = y. Now it is easy to
see that CG(y) =

(
CG(x)

)α
. On the other hand, clearly we have CG(x) ∼=(

CG(x)
)α
. This completes the proof of (3).

(4) Let H1 and H2 be two non-abelian 2-generator subgroups of G. Then
H1 = ⟨x, x′⟩ and H2 = ⟨y, y′⟩ for some elements x, x′, y, y′ ∈ G. Thus by
hypothesis, there exists α ∈ Aut(G) such that (x, x′)α = (y, y′). It follows
that xα = y and x′α = y′. Therefore Hα

1 = H2 and H1
∼= H2. Now let (x1, x2)

and (y1, y2) be two non-commuting pairs with entries fromH. By hypothesis,
there exists β ∈ Aut(G) such that (x1, x2)

β = (y1, y2). By the �rst part of

(4), ⟨x1, x2⟩β = ⟨y1, y2⟩ ∼= H and since ⟨x1, x2⟩ and ⟨y1, y2⟩ are subgroups
of H and these groups are all �nite, it follows that ⟨x1, x2⟩ = ⟨y1, y2⟩ = H.
Hence the restriction of β to H, is an automorphism of H. This completes
the proof of (4).
(5) Since G is non-abelian, there exists a non-central element x in G. Then
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xy ̸= yx for some y ∈ G. Since x is of �nite order, there are commuting
elements x1, . . . , xn ∈ G of prime power orders such x = x1 · · ·xn. It follows
that xiy ̸= yxi for some i. This implies that G contains a non-central element
of p-power order for some prime p. It follows from (2) that every element in
G\Z(G) has the same p-power order. Now let z ∈ Z(G) and t ∈ G\Z(G),
where tp

s
= 1. Then tz ∈ G\Z(G) and (tz)p

s
= 1. Since z ∈ Z(G), 1 =

tp
s
zp

s
= zp

s
. This completes the proof of (5).

(6) Suppose, for a contradiction, that there exists x ∈ Φ(G)\Z(G). Let
X = {x1, . . . , xd} be a minimal generating set for G, that is no proper subset
ofX generatesG. Since Φ(G) is the set of non-generators ofG, Φ(G)∩X = ∅.
Since G is not abelian, there exists i ∈ {1, . . . , d} such that xi ∈ G\Z(G). By
(1), xα = xi for some α ∈ Aut(G). Since Φ(G) is a characteristic subgroup
of G, xi ∈ Φ(G) which is a contradiction. Therefore Φ(G) ≤ Z(G).
By part (5), G is a �nite p-group for some prime p. Thus Φ(G) = GpG′ is a
subgroup of Z(G). This implies that G is nilpotent of class 2 and G/Z(G) is
elementary abelian. □

Note that if G is a nilpotent p-group of class 2 (p a prime number), then
its commutator subgroup G′ is non-trivial and contained in the center of G.
We shall make frequent use without reference of well-known relations such
as

[x, yz] = [x, y][x, z], [x, yr] = [xr, y] = [x, y]r, (xy)n = xnyn[y, x]
n(n−1)

2

for all x, y, z ∈ G, n ∈ N and r ∈ Z.
For a prime number p, an integer n > 0 such that pn > 2 and an arbitrary
integer d > 1, we denote by Gd(p

n) the free group of rank d in the variety
V(pn) of groups of class at most 2 satisfying the laws xp

n
= [x, y]p = 1.

Lemma 1(6) show that any �nite group G whose non-commuting graph is
Aut(G)-symmetric is in the variety V(pn) for some prime p and integer n ≥ 1.
Thus G is isomorphic to a quotient of Gd(p

n). The following result shows that
free groups in the latter variety is a good source for the groups in question.

Theorem 1. The non-commuting graph of Gd(p
n) is Aut(Gd(p

n))-symmetric.

Proof. Let Gd = Gd(p
n) and suppose that x1, . . . , xd are free generators of

Gd. Suppose that X = xi11 · · ·xidd c1 and Y = xj11 · · ·xjdd c2 (c1, c2 ∈ Φ(Gd) and
i1, . . . , id, j1, . . . , jd in Z) are two non-commuting elements of Gd. Now since
G′
d is of exponent p and

1 ̸= [X,Y ] =
∏
k<ℓ

[xk, xℓ]
ikjℓ−iℓjk ,

there exist k and ℓ, k < ℓ such that p does not divide K = ikjℓ − iℓjk. For
any x ∈ Gd, let x denote xΦ(Gd). We may write X and Y additively in the
vector space Gd/Φ(Gd) over Zp:

X = i1x1 + · · ·+ idxd and Y = j1x1 + · · ·+ jdxd.
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It follows that

jℓX − iℓY = Kxk + x and ikY − jkX = Kxℓ + y,

for some x, y ∈ ⟨x1, . . . , xk−1, xk+1, . . . , xℓ−1, xℓ+1, . . . , xd⟩. As gcd(K, p) =
1, it follows that

xk, xℓ ∈ ⟨x1, . . . , xk−1, X, xk+1, . . . , xℓ−1, Y , xℓ+1, . . . , xd⟩.
Hence

Gd = ⟨x1, . . . , xk−1, X, xk+1, . . . , xℓ−1, Y, xℓ+1, . . . , xd⟩.
Therefore, as Gd is free in the variety, there exists an automorphism Ψ(X,Y )

of Gd which maps x1 to X, x2 to Y and xi to xi for all i > 2. Now let X ′ and
Y ′ be another two non-commuting elements of Gd. Then Ψ(X′,Y ′)Ψ

−1
(X,Y ) ∈

Aut(Gd) is sending the pair (X,Y ) to (X ′, Y ′). This completes the proof. □

Lemma 2. Let G be a �nite non-abelian p-group (p > 2) having the property
that the automorphism group acts transitively on the set of ordered pairs of
non-commuting elements. Suppose that x1, . . . , xℓ ∈ G are such that
x1Z(G), . . . , xℓZ(G) form a basis for G/Z(G). Then ⟨xp1, . . . , x

p
ℓ ⟩ = ⟨xp1⟩ ×

· · · × ⟨xpℓ ⟩.

Proof. Let xpi11 · · ·xpiℓℓ = 1 for some integers i1, . . . , iℓ. Suppose that ik =
pαkjk, where gcd(jk, p) = 1 (k = 1, . . . , ℓ). Then, since G′ is of exponent
p > 2 and G is nilpotent of class 2, we can write

1 = xpi11 · · ·xpiℓℓ =
(
xs11 · · ·xsℓℓ

)p1+αi
,

where αi = min{αk | k = 1, . . . , ℓ} and sk = pαk−αijk (k = 1, . . . , ℓ).
Since gcd(si, p) = 1 and x1Z(G), . . . , xℓZ(G) form a basis for G/Z(G), we
have that x = xs11 · · ·xsℓℓ ̸∈ Z(G). Now it follows from Lemma 1(2) that
|xk| = |x| = pn (for some integer n ≥ 1) for each k = 1, . . . , ℓ. Thus pn

divides pαi+1 and so n − 1 ≤ αk for all k = 1, . . . , ℓ. This completes the
proof. □

Theorem 2. A �nite non-abelian 2-generator group G has the property that
the automorphism group acts transitively on the set of ordered pairs of non-
commuting elements if and only if G ∼= G2(p

n) which is isomorphic to

G = ⟨x, y | xpn = yp
n
= [x, y]p = [x, y, y] = [x, y, x] = 1⟩,

for some prime number p and integer n > 0 with pn > 2 or G ∼= Q8, the
quaternion group of order 8.

Proof. Throughout we denote G2(p
n) by G. We �rst prove the su�ciency.

It follows from Theorem 1 that the non-commuting graph of G is Aut(G)-
symmetric.
Since every two non-commuting elements of Q8 generate the group, it is easy
by using the following presentation of Q8

⟨x, y | x4 = 1, x2 = y2, xy = x−1⟩
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to see that Aut(Q8) acts transitively on the ordered pairs of non-commuting
elements of Q8.

Now we are going to show the necessity. Let G = ⟨a, b⟩. By Lemma 1(5),
G is a �nite p-group for some prime number p. Also it follows from Lemma
1(6), that G/Z(G) ∼= Cp ×Cp, since G is not abelian. On the other hand, as
G is 2-generator and non-abelian, G/Φ(G) ∼= Cp×Cp. Thus by Lemma 1(6),
Z(G) = Φ(G) = G′Gp. This implies that Z(G) = ⟨ap, bp, [a, b]⟩. By Lemma
1(2), we have |a| = |b| = pn for some integer n ≥ 1 (if p = 2, then since
G is not abelian, it follows from Lemma 1(5) that n ≥ 2). Note that, since
Gp ≤ Z(G), [a, b]p = [ap, b] = 1 and so |[a, b]| = p, since G is not abelian.
We �rst prove that either ⟨ap⟩ ∩ ⟨bp⟩ = 1 or G ∼= Q8. Suppose that a

pibpj =
1 for some i, j ∈ Z. Let pi = pti′ and pj = psj′, where i′, j′ ∈ Z and
gcd(i′j′, p) = 1. Assume s ≥ t and note that t ≥ 1. Then(

ai
′
bp

s−tj′
)pt

= ap
ti′bp

sj′ [bp
s−tj′ , ai

′
]
pt(pt−1)

2 = [bp
s−tj′ , ai

′
]
pt(pt−1)

2 . (#)

Suppose that p > 2 or s ≥ 2 or s > t. Then it follows from (#) that

[bp
s−tj′ , ai

′
]
pt(pt−1)

2 = [a, b]−j′i′ p
s(pt−1)

2 = 1.

It follows that |ai′bps−tj′ | divides pt. Now since gcd(i′, p) = 1, [ai
′
bp

s−tj′ , b] ̸=
1. It follows that ai

′
bp

s−tj′ ∈ G\Z(G) and so by Lemma 1(2), |ai′bps−tj′ | =
|a| = pn. Therefore n ≤ t ≤ s and so api = bpj = 1. Hence, in this case, we
have that ⟨ap⟩ ∩ ⟨bp⟩ = 1. Thus we may assume p = 2 and s = t = 1. It
follows that (ai)2(bj)2 = 1 and i and j are odd. Without loss of generality
we may assume that i = j = 1. Since (a, b), (ab, b) and (ab, a) are ordered
pairs of non-commuting elements of G, there exists α, β ∈ Aut(G) such that
(a, b)α = (ab, b) and (a, b)β = (ab, a). It follows that

1 = (a2b2)α = (ab)2b2 = a2b4[a, b] = b2[a, b],

1 = (a2b2)β = (ab)2a2 = a4b2[a, b] = a2[a, b].

Thus a2 = b2 = [a, b] and a4 = b4 = 1 and so G ∼= Q8.
From now on, suppose that

⟨ap⟩ ∩ ⟨bp⟩ = 1. (I)

We now show that
⟨[a, b]⟩ ∩ ⟨ap, bp⟩ = 1. (II)

It is enough to show that [a, b] ̸∈ ⟨ap, bp⟩, since |[a, b]| is prime. Suppose, for
a contradiction, that

[a, b] = apibpj for some i, j ∈ Z. (∗)
First assume that p > 2. Therefore a and b are of odd order and so (a, b),
(a2, b) and (a, b2) are ordered non-commuting pairs of elements ofG. Thus, by
hypothesis, there exist α, β ∈ Aut(G) such that (a, b)α = (a, b2) and (a, b)β =
(a2, b). It follows from (∗) that [a, b]α = (apibpj)α and [a, b]β = (apibpj)β .
Therefore [a, b]2 = apib2pj and [a, b]2 = a2pibpj . On the other hand, (∗)
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implies that [a, b]2 = a2pib2pj (note that ap, bp ∈ Z(G)). These relations yield
that api = bpi = 1 and so [a, b] = 1, a contradiction. Hence ⟨[a, b]⟩∩⟨ap, bp⟩ =
1, if p > 2.
Now suppose that p = 2. Since (a, b) and (b, a) are ordered non-commuting
pairs of elements in G, there exists an automorphisms α ∈ Aut(G) such that
(a, b)α = (b, a). It follows from (∗) that [b, a] = b2ia2j . Since [a, b]2 = 1,

a2ib2j = a2jb2i and so a2(i−j)b2(j−i) = 1. It follows from (I), we have that

b2(j−i) = 1. Thus b2i = b2j and so

[a, b] = a2ib2i. (III)

Now since (a, b), (ab, b) and (a, ab) are non-commuting pairs of elements
of G, there exist automorphisms β, γ ∈ Aut(G) such that (a, b)β = (ab, a)
and (a, b)γ = (a, ab). Now it follows from (III) that [ab, b] = (ab)2ib2i and

[a, ab] = a2i(ab)2i. Since [a, b] = [ab, b] = [a, ab], we have that b2i[b, a]i(2i−1) =

a2i[b, a]i(2i−1) = 1 and so a2ib2i = [b, a]2i(2i−1) = 1. Hence [a, b] = 1, a
contradiction.
Now it follows from (I) and (II), that

Z(G) = ⟨ap⟩ × ⟨bp⟩ × ⟨[a, b]⟩.
Therefore |Z(G)| = p2n−1 and |G| = p2n+1. Now by von Dyck's theorem, G
is an epimorphic image of G and since |G| = |G|, G ∼= G. This completes the
proof. □

We can now produce a further number of examples.

Theorem 3. Let G be a �nite 2-generated non-abelian group whose non-
commuting graph is Aut(G)-symmetric. If G is of exponent q and A is any
�nite abelian group of exponent dividing q, and not equal to q whenever G ∼=
Q8, then the non-commuting graph of G×A is also Aut(G×A)-symmetric.

Proof. By Theorem 2, q = pn for some prime p and integer n > 0. Let
A = Cpn1 ×· · ·×Cpnk . If G ̸∼= Q8, then G×A has the following presentation:

⟨x, y, a1, . . . , ak | xpn = yp
n
= [x, y]p = [x, y, x] = [x, y, y] = [ai, aj ] =

= [ai, x] = [ai, y] = ap
ni

i = 1 ∀i, j⟩,
and if G ∼= Q8, then G×A has the following presentation

⟨x, y, a1, . . . , ak | x4 = 1, x2 = y2, xy = x−1,

[ai, aj ] = [ai, x] = [ai, y] = a2i = 1 ;∀ i, j⟩.
It is now easy to see by von Dyck's theorem and Lemma 1(2) that for any
two non-commuting elements x1, x2 ∈ ⟨x, y⟩ and any two elements a, b ∈
⟨a1, . . . , ak⟩, the map α which is de�ned by x 7→ x1a, y 7→ x2b, ai 7→ ai for
all i, can be extended to an automorphism of G×A. From this, it now follows
that the non-commuting graph of G×A is Aut(G×A)-symmetric. □

Remark 1. For any two non-commuting elements x and y in Q8, we have
x2 = y2 = [x, y].
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We can give the classi�cation of �nite non-abelian 2-groups G having
a subgroup isomorphic to Q8 whose non-commuting graphs are Aut(G)-
symmetric.

Theorem 4. Let G be a �nite non-abelian 2-group having a subgroup isomor-
phic to Q8. Then the non-commuting graph of G is Aut(G)-symmetric if and
only if G ∼= Q8 × E for some elementary abelian 2-group E.

Proof. We prove that G is a Dedekind group. Let x and y be two non-
commuting elements of G. Then it follows from Lemma 1(2) and Theorem 2
that ⟨x, y⟩ ∼= Q8. Now by Remark 1 we have that x2 = [x, y] which implies
that xy = x3. Hence ⟨x⟩ ⊴ G for all x ∈ G and so every subgroup of G
is normal. Now by a famous result of Dedekind-Baer (see 5.3.7 of [4]) that
G ∼= Q8 × E for some elementary abelian 2-group E.
The converse follows from Theorem 3. □

3 3-Generator groups G whose non-commuting graphs are

Aut(G)-symmetric

In this section we study groups with the property of the title of the section
and we �nd some properties of them.

Theorem 5. Let G be a �nite non-abelian 3-generator group having the
property that the automorphism group acts transitively on the set of ordered
pairs of non-commuting elements. Then CG(x) = ⟨x⟩Z(G) for all x ∈ G\Z(G).

Proof. Let x ∈ G\Z(G). By Lemma 1(5)-(6), G is a p-group (for some prime
p) of class 2 and x ̸∈ Φ(G). Then Burnside's basis theorem implies that
G = ⟨x, y, z⟩ for some y, z ∈ G. Suppose, for a contradiction, that CG(x) ̸=
⟨x⟩Z(G). Since G/Z(G) is elementary abelian, it follows that yizj ∈ CG(x)
for some integers i and j such that 0 ≤ i ≤ j < p with (i, j) ̸= (0, 0).
Thus either G = ⟨x, yizj , z⟩ or G = ⟨x, yizj , y⟩. Therefore, without loss of
generality, we may assume that [x, y] = 1. Since x is not central, [x, z] ̸= 1.
If CG(z) = ⟨z⟩Z(G), then by Lemma 1(1) and (3), CG(x) = ⟨x⟩Z(G), a
contradiction. Therefore xℓyk ∈ CG(z)\⟨z⟩Z(G) for some integers ℓ and k
such that 0 ≤ ℓ ≤ k < p with (ℓ, k) ̸= (0, 0). Since [x, z] ̸= 1, k ̸= 0 and
so G = ⟨x, xℓyk, z⟩ and xℓyk ∈ Z(G), a contradiction. This completes the
proof. □

For a �nite group G, we denote by d(G) the minimum number of elements
of a generating set of G.

Lemma 3. Let G be a non-abelian nilpotent group of class 2. If d(G) = 3,
then there exist pairwise non-commuting elements x, y and z such that G =
⟨x, y, z⟩.

Proof. Let G = ⟨a, b, c⟩. Since G is not abelian, we may assume that a ∈
G\Z(G). Thus a does not commute with either b or c. Thus we may assume
that [a, b] ̸= 1. Suppose that [a, c] = 1. Then as G is nilpotent of class 2,
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[a, bc] = [a, b][a, c] = [a, b] ̸= 1. Since G = ⟨a, b, bc⟩, if [b, bc] ̸= 1, we are done.
Thus we may assume that [b, bc] = 1. Now we have [ab, bc] = [a, bc] ̸= 1 and
as G = ⟨a, ab, bc⟩, we are done. Therefore we may assume that [a, c] ̸= 1. If
[b, c] ̸= 1, the proof is complete. If [b, c] = 1, since G = ⟨a, ab, c⟩ the proof
completes. □

Lemma 4. Let G be a 3-generator nilpotent group of class two whose derived
subgroup is of prime exponent p. Then G′ = {[x, y] | x, y ∈ G}.

Proof. Let G = ⟨a, b, c⟩. Then, since G is nilpotent of class two, G′ =
⟨[a, b], [a, c], [b, c]⟩. As G′ ≤ Z(G), every element of G′ can be written as
[a, b]i[a, c]j [b, c]k. It is enough to show that there are elements x, y ∈ G such
that [x, y] = [a, b]i[a, c]j [b, c]k. If p | j, then we have

[a, b]i[a, c]j [b, c]k = [a, b]i[b, c]k = [ajc−k, b]

and we are done. Now suppose p ∤ j and so there is an integer j′ such that
p | (jj′ − 1). Thus we may write

[a, b]i[a, c]j [b, c]k = [a, bicj ][bk, c]jj
′
= [a, bicj ][bkj

′
, bicj ] = [abkj

′
, bicj ].

This completes the proof. □

Lemma 5. Let G be a �nite non-abelian p-group having the property that
the automorphism group acts transitively on the set of ordered pairs of non-
commuting elements. If d(G) = 3 and N is a characteristic subgroup of G,
then either G′ ≤ N or G′ ∩N = 1.

Proof. Suppose that G′ ∩ N ̸= 1. Then by Lemma 4, there exist x, y ∈ G
such that 1 ̸= [x, y] ∈ N . Now let a and b are two arbitrary elements of
G such that 1 ̸= [a, b]. By hypothesis, there exists an automorphism α of
G such that [a, b] = [x, y]α. Since Nα = N , we have that [a, b] ∈ N . This
completes the proof. □

Lemma 6. Let G be a �nite non-abelian group whose non-commuting graph
is Aut(G)-symmetric. If d(G) = 3, then d(G′) ̸= 2.

Proof. By Lemma 3, there exist pairwise non-commuting elements x, y, z
generating G. Suppose, for a contradiction, that d(G′) = 2. By Lemma 1, G
is a p-group for some prime p and G′ ≤ Z(G) is a Zp-vector space. It follows
that there is a Zp-basis of size 2 forG

′ in {[x, y], [x, z], [y, z]}. Suppose without
loss of generality that {[x, y], [y, z]} is a basis forG′. Then [x, y]i[y, z]j = [x, z]
for some integers i and j. Then [xiz−j , y] = [x, z]. Since [x, z] ̸= 1, either i or j
is coprime to p. If gcd(i, p) = 1, consider the equality [xiz−j , yi] = [xiz−j , z]
and if gcd(j, p) = 1, consider the equality [xiz−j , y−j ] = [x, xiz−j ]. Thus
if p ∤ i, (respectively, p ∤ j) {a = xiz−j , b = yi, c = z} (respectively, {a =
xiz−j , b = x−1, c = y−j}) is a generating set for G consisting of pairwise non-
commuting elements with the property that [a, b] = [a, c] so that {[a, b], [b, c]}
is a basis for G′. Now by hypothesis there is an automorphism α of G sending
(a, b) to (b, a). Therefore {[a, b]α, [b, c]α} must be a basis for G′. We have
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[a, b]α = [a, b]−1 and [b, c]α = [a, b]i+j , where cα = aℓbicjf for some f ∈ Φ(G).
These imply that G′ = ⟨[a, b]⟩, a contradiction. This completes the proof. □

Lemma 7. Let G be a �nite non-abelian group whose non-commuting graph
is Aut(G)-symmetric. If d(G) = 3 and G′ is non-cyclic then Φ(G) = Z(G).

Proof. By Lemma 1(6), Φ(G) ≤ Z(G). If Φ(G) ̸= Z(G), then there is a
generating set {x, y, z} for G such that z ∈ Z(G). Since G′ ≤ Z(G), it
follows that G′ = ⟨[x, y], [y, z], [x, z]⟩. Thus G′ = ⟨[x, y]⟩ as [x, z] = [y, z] = 1.
Hence d(G′) = 1, a contradiction. This completes the proof. □
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